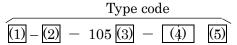


- Common standard specifications
- High quality/high reliability


Highly reliable electronic parts are adopted.

Aging test of each part as well as burn-in aging test of the product under a high temperature are implemented.

PCB treatment

In order to reinforce insulation resistance stability of PCB surfaces and prevent the surfaces from insulation deterioration, B side of the PCB was cleaned and coated with high humidity resistant varnish after parts installation.

- Type code designation
 - Digital % scale typeActual scale type

• LCD type

Alarm setter $\overline{SDLC - 105 - (4)}$ (5)

Deviation alarm setter SDDV - 105 - (4)

(1) Scale

(2)	
Setting	l

Specification code

(4)(5)

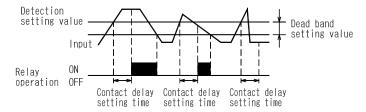
Scale
Actual scale
Digital % scale

Mark	Setting
HL	Upper/lower limit setting
НН	Upper/Upper limit setting
LL	Lower/lower limit setting
Н	Upper limit setting
L	Lower limit setting

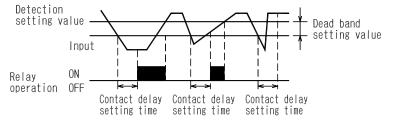
No mark Standard	
NO IIIaik Stailuaiu	
D With contact delay c	ircuit

Input specification,	
Auxiliary supply	
* Refer to specification code	١.

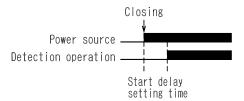
■ Standard specification


Standard specification				
Item		Specification		
Type		SDD105	SD105	
Setting	method	HL,HH,LL,H,L		
Setting	range	0-99% 1% step (digital switch)	Minimum input value ~ Maximum input value	
Scale di	vision	_	Decide scale classification by maximum setting value MAX50 divisions	
Dead ba	nd	0.5-5% variable (% against input span)		
Start de	lay	0.5 sec. (up to 10 sec. manufacturable by	specifying)	
Repeata	bility	$\pm 0.5\%$		
Setting	accuracy	$\pm 1.0\%$	$\pm 3.0\%$	
Response speed		≦0.3 sec. 1C		
	Contact output	Each 1C relay contact output		
Output	Contact capacity	AC120V, 1A ($\cos \phi = 1$)		
		DC30V, 2A (resistance load)		
Inaulati	on resistance	Between electric circuit and outer case	\geq 50M Ω at DC500V	
msulati	on resistance	Between input/power/contact	\geq 50M Ω at DC500V	
Withata	nd valtana	Between electric circuit and outer case	AC2, 000V, 1 min, 50/60Hz	
Withstand voltage		Between input/power/contact	AC1, 500V, 1 min, 50/60Hz	
Impulse withstand voltage		Between electric circuit and outer case	5kV 1.2/50μs positive/negative polarity, 3 times each	
Appearance color		Munsell N1.5 (black)		
Operating temperature/ humidity range		−10·+55°C, 30·85%RH (no condensation)		
Storage	temperature range	$-30\text{-}+60^{\circ}\!$		
Weight		450g		

Item		Specification		
Type		SDLC-105		
Setting	method	Anyone of HL, HH, LL, H, and L is setta	ble.	
Setting	range	Any value between -9999-+9999		
Scaling	division	Any value between -9999-+9999		
Dead ba	nd	Any value between 0.5%-50.0%		
Start de	lay	Any value between 1-180 sec.		
Contact	delay	Any value between 1-180 sec.		
Repeata	bility	$\pm 0.1\%$		
Setting	accuracy	$\pm 2.0\%$		
Display accuracy		$\pm 0.2\%$ ± 1 digit		
Response speed		Approx. 0.5 sec. 1C		
Contact output		Each 1C relay contact output		
Output	Contact capacity	AC120V, 1A (COS $\phi = 1$)		
Contact capacity		DC30V, 2A (resistance load)		
Insulation resistance		Between electric circuit and outer case	$\geq 50 \mathrm{M}\Omega$ at DC500V	
ilisulati	on resistance	Between input/power/contact	$\geq 50 \mathrm{M}\Omega$ at DC500V	
Withstand voltage		Between electric circuit and outer case	AC2, 000V, 1 min, 50/60Hz	
		Between input/power/contact	AC2, 000V, 1 min, 50/60Hz	
Impulse withstand voltage		Between electric circuit and outer case	5kV 1.2/50µs positive/negative polarity	
Appearance color		Case/socket: black (munsell N1.5) Rating plate: grey		
Operating temperature/		0-+55°C, 30-85%RH (no condensation)		
humidit		0 1 00 C, 00 00/01411 (110 condensation)		
	temperature range	$-25 + 70^{\circ}$ C		
Weight		380g		


Relay operation

■ Contact delay function (definite time type of SDD and SD, SDLC)


Relay operation during overvoltage detection

Relay operation during undervoltage detection

■ Start delay function (definite time type of SDD and SD, SVD, SDLC, SDDV)

Detecting operation starts in start delay setting time from power on.

ALARM SETTER
SDD 105
DIGITAL % SCALE TYPE

A digital % scale type setter for instrumentation. The device inputs DC voltage or DC current signal and outputs contact signal.

DEAD BAND DEAD BAND 0.50% 50

SDD-HL-105

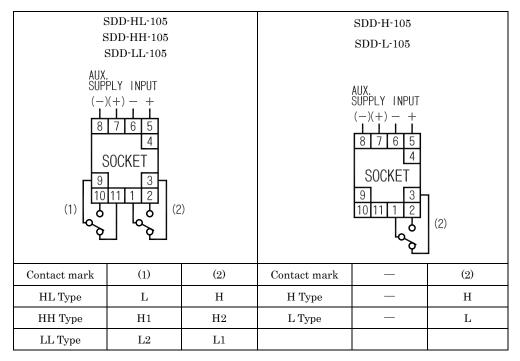
 $(80\times50\times133$ mm/450g)

■ Features

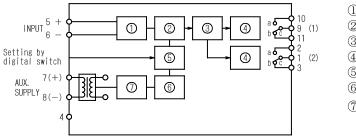
- 1. Compact plug-in type (11 pin)
- 2. Alarm can be set easily by front digital switch.(Convert input to 0 -100%)
- 3. Relay contact output. (1C contact)
- 4. Red LED indication type, state of control is understandable in one glance.
- 5. Dead band range can be changed by front VR.
- 6. Built-in start delay circuit. (0.5 sec)
- 7. Built-in contact delay circuit (MAX. 10 sec) is also manufacturable. (option)
- 8. Control power source DC110V of integral construction is also manufacturable.
- 9. Precise resistance unit for measures against current input open is manufacturable, too. (UR-1, selling separately)

■ Specification

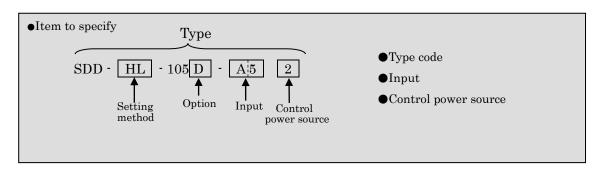
Input (input resistance)		Auxiliary supply	Common specification
A1: DC0-10mV (approx.1MΩ)	C3: DC0-1mA (.100 Ω)	$1: AC100V \pm 15\%,$	Consumption VA:
A2 : DC0-50mV (approx.1M Ω)	C5 : DC0-10mA (100 Ω)	50/60Hz	AC power source:3VA
$\overline{A3}$: DC0-60mV (approx.1M Ω)	C6: DC0-16mA (100 Ω)	$2 : AC110V \pm 15\%,$	DC power source:3W
A4: DC0-100mV (approx.1M Ω)	C7: DC4-20mA (100 Ω)	50/60Hz	Weight:
$\overline{\text{A5}}: \text{DC0-1V} \qquad (\text{approx.1M}\Omega)$	00 : other than those above	$3: AC200V \pm 15\%,$	AC power source:450g
$A6 : DC0-5V (approx.1M \Omega)$		50/60Hz	DC power source:450g
$\overline{A7}$: DC0-10V (approx.1M Ω)		$4 : AC220V \pm 15\%,$	Dead band: 0.5-5%
A8 : DC1-5V (approx.1M Ω)		50/60Hz	(difference between operation
		$5 : DC24V \pm 20\%$	value and return value) variable
Input product range:	Voltage input: DC10mV-250V	$\underline{6}$: DC48V \pm 20%	
	Current input : DC1mA-100mA	$7: DC110V \pm 20\%$	
		0 : other than those	
		above	


• Option Contact delay circuit (2 sec. Operation delay instantaneous return)

Contact starts to operate when input exceeded pickup value continuously for 2 sec., and returns when input falls below dropout value. The device can prevent the operation of contact that caused by instantaneous overload and other. Please specify as "with contact delay".


Type code: SDD -	- 105D -		
------------------	----------	--	--

• UR-1 precise resistance unit (Selling separately)


Use UR-1 combined with an alarm setter of voltage input. When changing the alarm setter in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it. (UR-1, resistance specified)

■ Block diagram

- ①Amplifying circuit
- ②Comparator
- 3Switching circuit
- **4**Relay
- **5**Setting part
- **©**Reference power source
- ⑦Power source circuit

ALARM SETTER
SD 105
ACTUAL SCALE TYPE

An actual scale type setter for instrumentation. The device inputs DC voltage or DC current signal and outputs contact signal.

SD-HL-105

 $(80 \times 50 \times 133 \text{mm}/450 \text{g})$

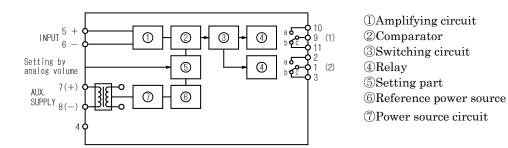
■ Features

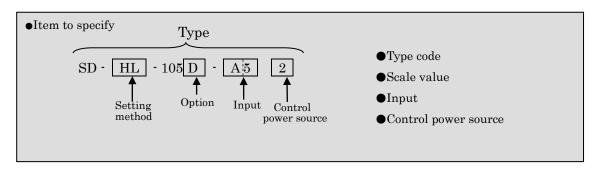
- 1. Compact plug-in type (11 pin)
- 2. Alarm can be set easily by front VR because the device is actual scale type.
- 3. Relay contact output. (1C contact)
- 4. Two-color LED indication type, state of control is understandable at one glance. (When not detected: green; When detected: red)
- 5. Dead band range can be changed by front VR.
- 6. Built-in start delay circuit. (0.5 sec)
- 7. Built-in contact delay circuit (MAX. 10 sec) is also manufacturable. (Option)
- 8. Precise setting by a digital switch is possible because the device is VR method.
- 9. Precise resistance unit for measures against current input open is manufacturable, too. (UR-1, selling separately)

■ Specification

 Option Contact delay circuit (2 sec. Operation delay instant 	taneous return)
--	-----------------

Contact starts to operate when input exceeded pickup value continuously for 2 sec., and returns when input falls below dropout value. The device can prevent the operation of contact that caused by instantaneous overload and other. Please specify as "with contact delay".


Type code: SD -	- 105 D] -	- 1	


• UR-1 precise resistance unit (Selling separately)

Use UR-1 combined with an alarm setter of voltage input. When changing the alarm setter in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it. (UR-1, resistance specified)

SD-HL-105 SD-HH-105 SD-LL-105			SD-H-105 SD-L-105		
AUX. SUPPLY INPUT (-)(+) - + 8 7 6 5 4 SOCKET 9 3 10 11 1 2 (2)			AUX. SUPPLY INPUT (-)(+) - + 8 7 6 5 4 SOCKET 9 3 10 11 1 2	(2)	
Contact mark	(1)	(2)	Contact mark	_	(2)
HL Type	L	Н	Н Туре	_	Н
НН Туре	H1	H2	L Type	_	L
LL Type	L2	L1			

■ Block diagram

AC VOLTAGE ALARM SETTER
SVD 105
DIGITAL % SCALE TYPE

A digital % scale setter for instrumentation. The device inputs an AC voltage and outputs a contact signal.

■ Features

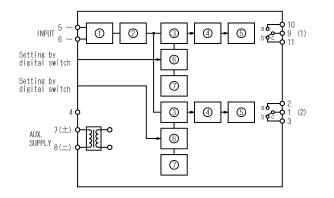
- 1. Compact plug-in type.
- 2. Alarm can be set easily by front digital switch. (Convert input to 0-100%)
- 3. Relay contact output. (1C contact)
- 4. Red LED indication type, state of control is understandable at one glance.
- 5. Dead band range can be changed by front VR.
- 6. Built-in start delay circuit. (0.5 sec)
- 7. Built-in contact delay circuit (MAX. 10 sec) is also manufacturable. (Option)

DEAD BAND DEAD BAND O. S. O. S. O. S. ET. O. S. O. S.

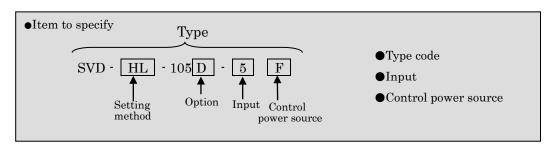
SVD-HL-105 $(80 \times 50 \times 131 \text{mm}/320\text{g})$

■ Specification

How to specify S	VD 10)5	t	
Setting method	Contact delay circuit	Input (input current)	Auxiliary supply	Consumption VA
H: Upper limit L: Lower limit L: Upper/lower limit L: Lower/lower limit H: Upper/upper limit	None: Without contact delay circuit (standard) : with (option)	$ \begin{array}{ c c c c c c } \hline 1 : AC0-63.5V & (110/\sqrt{3}) & (1mA) \\ \hline 2 : AC0-86.6V & (150/\sqrt{3}) & (1mA) \\ \hline 3 : AC0-110V & (1mA) \\ \hline 4 : AC0-127V & (220/\sqrt{3}) & (1mA) \\ \hline 5 : AC0-150V & (1mA) \\ \hline 6 : AC0-150V & (1mA) \\ \hline 7 : AC0-220V & (1mA) \\ \hline 8 : AC0-300V & (1mA) \\ \hline 0 : other than those above \\ \hline \\ & (rated frequency: 50/60Hz) \\ & product range: \\ & AC10-300V, 45-65Hz \\ \hline \end{array} $	☐: DC19-29V (DC24V±20%) ☐: AC/DC80-264V AC100/110V ±20%,50/60Hz AC200/220V ±20%,50/60Hz DC100/110V±20%	AC /DC80-264V: AC power source:5.7VA DC power source:2.2W DC19-29V: 2.2W


 Option Contact delay circuit (2 sec. Operation delay instant 	taneous return)
--	-----------------

Contact starts to operate when input exceeded pickup value continuously for 2 sec., and returns when input falls below dropout value. The device can prevent the operation of contact that caused by instantaneous overload and other. Please specify as "with contact delay".


Type code:	SVD	- 🗆	- 105	D	-		ı
TVDE COUE.	17 V I J		1 (///	1111		 	ı

SVD-HL-105 SVD-HH-105 SVD-LL-105			SVD-H-105 SVD-L-105		
AUX. SUPPLY INPUT (=)(±) ~ ~ 1 8 7 6 5 4 SOCKET 9 3 10 111 1 2 (1) 0 0 (2)			AUX. SUPPLY INPUT (=)(±) ~ ~ ~ I I I I 8 7 6 5 4 SOCKET 9 3 10 11 1 2	(2)	
Contact mark	(1)	(2)	Contact mark	_	(2)
HL Type	L	Н	Н Туре	_	Н
НН Туре	H1	H2	L Type	_	L
LL Type	L2	L1			

■ Block diagram

- ①AC/DC
- ②Amplifying circuit
- ${\small {\it @Comparator}}$
- 4Drive circuit
- **5**Relay
- **6**Setting part
- ${\Large @} Reference\ voltage$

ALARM SETTER				
SDLC - 105 -				

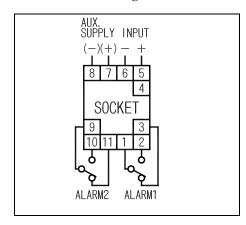
LCD TYPE

A digital % scale setter for instrumentation that inputs a DC voltage or DC current signal, compares the signal with preset signal, then outputs the over-and-short by two independent contact signals. Because the device is software compatible type, besides scale of input can be set at will in accordance with process quantity, each setting value (operation value, contact delay, etc) can be set and changed freely as well. Also, actual indication of input and each setting value can be displayed by a LCD (with back light) in 4 digit.

SDLC-105 (80×50×133mm/380g)

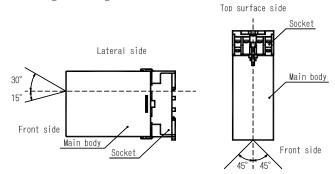
■ Features

- 1. Setting accuracy $\pm 0.2\%$, indication accuracy $\pm 0.2\%$ ± 1 digit.
- 2. Withstand voltage between input/output/power source/outer case is AC2, 000V.
- 3. Display and setting of actual scale by LCD can be implemented freely by front SW button, also suitable for scaling change and so on.
- 4. Setting values are stored in a nonvolatile RAM and are free from the affection of a power failure.
- 5. By sufficient derating of parts used and reduction of internal heat generation, liability is improved.
- 6. Back light turns on during key operation. It turns off automatically 30 sec. after key operation finished.


■ Specification

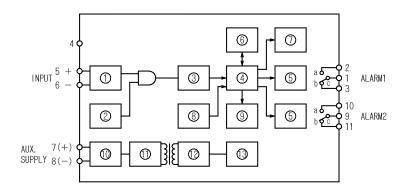
Input (inp	Input (input resistance)		
	$ \begin{array}{c} \hline \textbf{C3} : DC0\text{-}1mA \ (approx.100 \ \Omega) \\ \hline \textbf{C4} : DC0\text{-}5mA \ (approx.100 \ \Omega) \\ \hline \textbf{C5} : DC0\text{-}10mA \ (approx.100 \ \Omega) \\ \hline \textbf{C6} : DC0\text{-}16mA \ (approx.100 \ \Omega) \\ \hline \textbf{C7} : DC4\text{-}20mA \ (approx.100 \ \Omega) \\ \hline \textbf{00} : \text{other than those above} \\ \end{array} $	1: AC100V(±15%), 50/60Hz 2: AC110V(±15%), 50/60Hz 5: DC24V(±15%) 6: DC48V(±15%) 7: DC110V(+30%,-20%) 0: other than those above	
Input product range : Voltage Current Plus/mir	VA consumption: AC power source4.5VA DC power source4.5W		

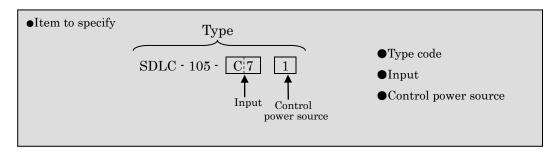
• Factory preset


Product is shipped in the following setting if nothing was specified.

T	G.41.	Product is shipped With the following setting.		
Item	Setting range		0 0	
		ALARM 1	ALARM 2	
Scaling	-9999-9999	0.0-100.0		
Unit	%, m, °C, m3/h, ppm	%		
Unit	pH, Tpm, x10kg, Ω, kW			
Detection point	-9999-9999	70.0 30.0		
Dead band	0.5-50.0%	3.0%	3.0%	
O	H, L, OFF and excitation/	II:.	T:4-4:	
Output mode	non-excitation	H, excitation	L, excitation	
Start delay (SD)	1-180S	5S		
Contact delay (CD)	0-180S	0S	0S	

• Visual angle range of LCD


Because contrast of a LCD varies with the angles from which it is viewed, install it to the most suitable position in a panel according to the figure below.


• UR-1 precise resistance unit (Selling separately)

Use UR-1 combined with an alarm setter of voltage input. When changing the alarm setter in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it. (UR-1, resistance specified)

■ Block diagram

- (I)Pulse width modulation
- ②Reference clock
- ③Pulse counter
- **4**CPU operational circuit
- **5**Relay
- **6** Nonvolatile RAM
- **7**LED indicator
- ®Operating switch
- 9LCD
- ®Rectification smoothing
- ①DC/DC power source
- @Current smoothing
- ⁽¹³⁾Constant voltage circuit

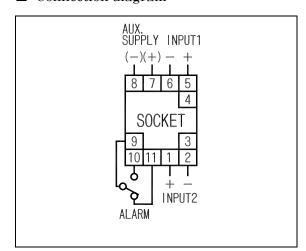
DEVIATION ALARM SETTER

SDDV - 105 - EDDV - LCD TYPE

■ Use

A compact plug-in setter for instrumentation. The device inputs two DC signals, calculates deviation between inputs and deviation of each input, compares the results with preset signal, then outputs the over-and-short. Because the device is software compatible, besides full scale of input can be set at will in accordance with process quantity, each setting value (operation value, moving average constant, contact delay, etc) can be set and changed freely as well. Also, input (actual scale) and each setting value can be displayed by a LCD (with back light) in 4 digits.

SDDV-105 (80×50×133mm/380g)


■ Features

- 1. Setting accuracy $\pm 0.5\%$
- 2. Indication accuracy $\pm 0.5\% \pm 1$ digit.
- 3. Withstand voltage between input/output/power source/outer case is AC2, 000V.
- 4. Display and setting of actual scale by LCD can be done freely with front SW button, also suitable for scaling change and so on.
- 5. Setting values are stored in a nonvolatile RAM and are free from the affection of a power failure.
- 6. By sufficient derating of parts used and reduction of internal heat generation, liability is improved.
- 7. Back light turns on during key operation. It turns off automatically 30 sec. after key operation finished.

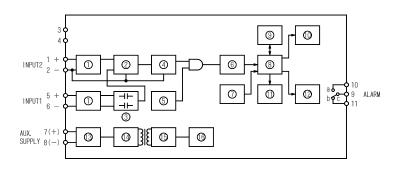
■ Specification

Input (input resistance)	Auxiliary supply	
$ \begin{array}{ c c c c c }\hline A4 : DC0-100mV (approx.1M \Omega) & \hline C3 : DC0-1mA (approx.100 \Omega) \\ \hline A5 : DC0-1V & (approx.1M \Omega) & \hline C4 : DC0-5mA (approx.100 \Omega) \\ \hline A6 : DC0-5V & (approx.1M \Omega) & \hline C5 : DC0-10mA (approx.100 \Omega) \\ \hline A7 : DC0-10V & (approx.1M \Omega) & \hline C6 : DC0-16mA (approx.100 \Omega) \\ \hline A8 : DC1-5V & (approx.1M \Omega) & \hline C7 : DC4-20mA (approx.100 \Omega) \\ \hline \hline 00 : other than those above \\ \hline \end{array} $	1: AC100V(±15%), 50/60Hz 2: AC110V(±15%), 50/60Hz 5: DC24V(±15%) 6: DC48V(±15%) 7: DC110V(+30%, 20%) 8: DC100V(+43%, 12%) 0: other than those above (AC200/220V is not manufacturable.)	
Input product range : Voltage input: DC50mV-60V	VA consumption: AC power source 4.5 VA DC power source 4.5 W	

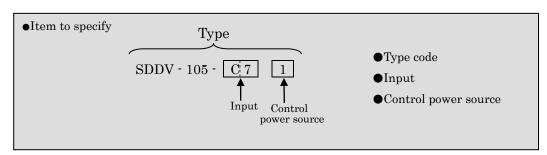
■ Connection diagram

• UR-1 precise resistance unit (Selling separately)

Use UR-1 combined with an alarm setter of voltage input. When changing the alarm setter in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it.


(UR-1, resistance specified)

• Factory preset


Product is shipped in the following setting if nothing was specified.

Item		Setting range	Factory preset		
Measurement display (display against 0.0-100.0% of input span)		Reference input		-9999-9999 -99.9-999.9 -9.99-99.99	0.0-100.0
	Measurement input		0.000-9.999 (decimal point can be set at will)	0.0 100.0	
Display of deviation between inputs (Reference input - measurement input)		by setting of measurement display	0.0-100.0		
Unit display				m, Tpm	m
Deviation action value between inputs (moving average detection, actual scale)		≥ 4% against full scale of measurement actual scale. (can not be set to be less than 4%)	10.0		
Deviation action value of individual input (instantaneous detection, actual scale)			30.0		
Dead band (% against input span) At the time of deviation between inputs		0.5-50%	3.0%		
Output mode		Excitation/ non-excitation	Excitation		
Contact delay At	ntact delay At the time of deviation between input		0-30S	1S	
(C.D.)	At the time of deviation of individual input			1S	
Start delay (S.D.)		1-30S	5S		
Calibration (% against input span) Bias Span		-9.99-9.99%	0.00		
		-9.99-9.99%	0.00		
Sampling time (S)		1-30S	1S		
Number of data sampling (N)				1-8	8

■ Block diagram

- ①Input circuit ②Analog multiflexer
- 3 Capacitively coupled isolation amplifier
- **4** Pulse width modulation
- ⑤Reference clock ⑥Pulse counter
- 7Operating switch
- ®CPU operational circuit
- ①LCD indicator ②Relay
- ¹³Rectification smoothing
- **4**DC/DC power source
- (15)Smoothing
- **®**Constant voltage circuit

■ Dimensions (mm)

Fig.1

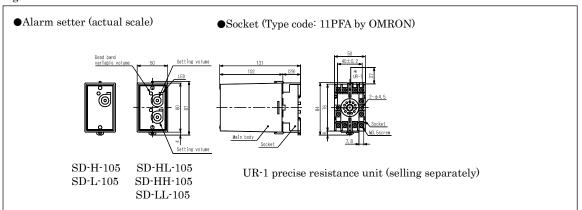


Fig.2

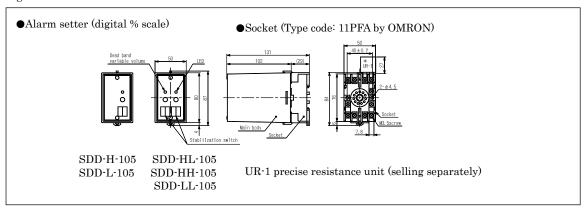
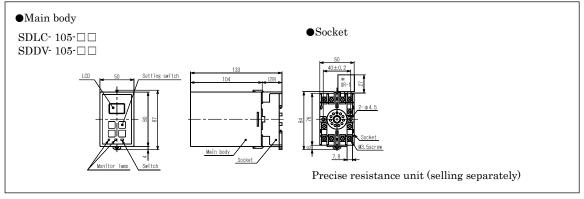
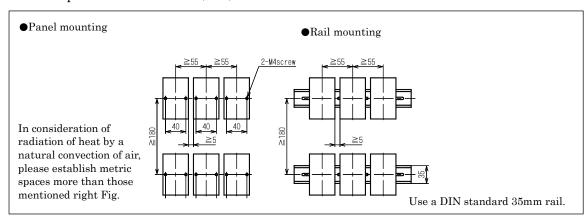




Fig.3

■ Multiple unit installation (mm)

